问题描述
这就是我想要完成的 -
Here's what I am trying to accomplish -
- 我有大约一百万个文件需要解析 &将解析后的内容附加到单个文件中.
- 由于单个进程需要很长时间,因此此选项已失效.
- 不使用 Python 中的线程,因为它本质上是运行单个进程(由于 GIL).
- 因此使用多处理模块.即产生 4 个子进程来利用所有原始核心功能:)
到目前为止一切顺利,现在我需要一个所有子进程都可以访问的共享对象.我正在使用多处理模块中的队列.此外,所有子流程都需要将其输出写入单个文件.我猜是使用锁的潜在场所.当我运行这个设置时,我没有收到任何错误(所以父进程看起来很好),它只是停止了.当我按 ctrl-C 时,我看到一个回溯(每个子进程一个).也没有输出写入输出文件.这是代码(请注意,在没有多进程的情况下一切运行良好) -
So far so good, now I need a shared object which all the sub-processes have access to. I am using Queues from the multiprocessing module. Also, all the sub-processes need to write their output to a single file. A potential place to use Locks I guess. With this setup when I run, I do not get any error (so the parent process seems fine), it just stalls. When I press ctrl-C I see a traceback (one for each sub-process). Also no output is written to the output file. Here's code (note that everything runs fine without multi-processes) -
import os
import glob
from multiprocessing import Process, Queue, Pool
data_file = open('out.txt', 'w+')
def worker(task_queue):
for file in iter(task_queue.get, 'STOP'):
data = mine_imdb_page(os.path.join(DATA_DIR, file))
if data:
data_file.write(repr(data)+'
')
return
def main():
task_queue = Queue()
for file in glob.glob('*.csv'):
task_queue.put(file)
task_queue.put('STOP') # so that worker processes know when to stop
# this is the block of code that needs correction.
if multi_process:
# One way to spawn 4 processes
# pool = Pool(processes=4) #Start worker processes
# res = pool.apply_async(worker, [task_queue, data_file])
# But I chose to do it like this for now.
for i in range(4):
proc = Process(target=worker, args=[task_queue])
proc.start()
else: # single process mode is working fine!
worker(task_queue)
data_file.close()
return
我做错了什么?我还尝试在生成时将打开的 file_object 传递给每个进程.但是没有效果.例如- Process(target=worker, args=[task_queue, data_file])
.但这并没有改变什么.我觉得子进程由于某种原因无法写入文件.file_object
的实例没有被复制(在生成时)或其他一些怪癖......有人知道吗?
what am I doing wrong? I also tried passing the open file_object to each of the processes at the time of spawning. But to no effect. e.g.- Process(target=worker, args=[task_queue, data_file])
. But this did not change anything. I feel the subprocesses are not able to write to the file for some reason. Either the instance of the file_object
is not getting replicated (at the time of spawn) or some other quirk... Anybody got an idea?
EXTRA: 还有有什么办法可以让持久的mysql_connection 保持打开&将其传递给 sub_processes?所以我在我的父进程中打开了一个 mysql 连接 &我的所有子进程都应该可以访问打开的连接.基本上这相当于 python 中的 shared_memory .这里有什么想法吗?
EXTRA: Also Is there any way to keep a persistent mysql_connection open & pass it across to the sub_processes? So I open a mysql connection in my parent process & the open connection should be accessible to all my sub-processes. Basically this is the equivalent of a shared_memory in python. Any ideas here?
推荐答案
虽然和 Eric 的讨论很有成果,但后来我找到了更好的方法.在多处理模块中,有一个名为Pool"的方法非常适合我的需求.
Although the discussion with Eric was fruitful, later on I found a better way of doing this. Within the multiprocessing module there is a method called 'Pool' which is perfect for my needs.
它会根据我的系统拥有的核心数量进行自我优化.即只产生与否一样多的进程.的核心.当然,这是可定制的.所以这里是代码.以后可能会帮助别人-
It's optimizes itself to the number of cores my system has. i.e. only as many processes are spawned as the no. of cores. Of course this is customizable. So here's the code. Might help someone later-
from multiprocessing import Pool
def main():
po = Pool()
for file in glob.glob('*.csv'):
filepath = os.path.join(DATA_DIR, file)
po.apply_async(mine_page, (filepath,), callback=save_data)
po.close()
po.join()
file_ptr.close()
def mine_page(filepath):
#do whatever it is that you want to do in a separate process.
return data
def save_data(data):
#data is a object. Store it in a file, mysql or...
return
仍在经历这个巨大的模块.不确定 save_data() 是由父进程执行还是由衍生的子进程使用.如果是孩子进行了保存,则在某些情况下可能会导致并发问题.如果有人有更多使用此模块的经验,您可以在这里了解更多知识...
Still going through this huge module. Not sure if save_data() is executed by parent process or this function is used by spawned child processes. If it's the child which does the saving it might lead to concurrency issues in some situations. If anyone has anymore experience in using this module, you appreciate more knowledge here...
这篇关于蟒蛇->多处理模块的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!