<bdo id='VxM11'></bdo><ul id='VxM11'></ul>

<legend id='VxM11'><style id='VxM11'><dir id='VxM11'><q id='VxM11'></q></dir></style></legend>
  • <tfoot id='VxM11'></tfoot>

      <i id='VxM11'><tr id='VxM11'><dt id='VxM11'><q id='VxM11'><span id='VxM11'><b id='VxM11'><form id='VxM11'><ins id='VxM11'></ins><ul id='VxM11'></ul><sub id='VxM11'></sub></form><legend id='VxM11'></legend><bdo id='VxM11'><pre id='VxM11'><center id='VxM11'></center></pre></bdo></b><th id='VxM11'></th></span></q></dt></tr></i><div id='VxM11'><tfoot id='VxM11'></tfoot><dl id='VxM11'><fieldset id='VxM11'></fieldset></dl></div>

      <small id='VxM11'></small><noframes id='VxM11'>

      1. 多处理:在 PyObject_Call 中没有错误的 NULL 结果

        Multiprocessing : NULL result without error in PyObject_Call(多处理:在 PyObject_Call 中没有错误的 NULL 结果)

              <small id='hfsyQ'></small><noframes id='hfsyQ'>

                <tbody id='hfsyQ'></tbody>
                <bdo id='hfsyQ'></bdo><ul id='hfsyQ'></ul>

              • <i id='hfsyQ'><tr id='hfsyQ'><dt id='hfsyQ'><q id='hfsyQ'><span id='hfsyQ'><b id='hfsyQ'><form id='hfsyQ'><ins id='hfsyQ'></ins><ul id='hfsyQ'></ul><sub id='hfsyQ'></sub></form><legend id='hfsyQ'></legend><bdo id='hfsyQ'><pre id='hfsyQ'><center id='hfsyQ'></center></pre></bdo></b><th id='hfsyQ'></th></span></q></dt></tr></i><div id='hfsyQ'><tfoot id='hfsyQ'></tfoot><dl id='hfsyQ'><fieldset id='hfsyQ'></fieldset></dl></div>
                  <tfoot id='hfsyQ'></tfoot>
                  <legend id='hfsyQ'><style id='hfsyQ'><dir id='hfsyQ'><q id='hfsyQ'></q></dir></style></legend>

                  本文介绍了多处理:在 PyObject_Call 中没有错误的 NULL 结果的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  Here is a sample program where I use multiprocessing. The calculations are done with multiprocessing.Process and the results are collected using multiprocessing.Queue.

                  #THIS PROGRAM RUNS WITH ~40Gb RAM. (you can reduce a,b,c for less RAM 
                  #but then it works for smaller values)
                  #PROBLEM OCCURS ONLY FOR HUGE DATA.   
                  from numpy import *
                  import multiprocessing as mp
                  
                  a = arange(0, 3500, 5)
                  b = arange(0, 3500, 5)
                  c = arange(0, 3500, 5)  
                  a0 = 540. #random values
                  b0 = 26.
                  c0 = 826.
                  def rand_function(a, b, c, a0, b0, c0):
                      Nloop = 100.
                      def loop(Nloop, out):
                          res_total = zeros((700, 700, 700), dtype = 'float') 
                          n = 1
                          while n <= Nloop:
                              rad = sqrt((a-a0)**2 + (b-b0)**2 + (c-c0)**2)
                              res_total += rad
                              n +=1 
                          out.put(res_total)
                      out = mp.Queue() 
                      jobs = []
                      Nprocs = mp.cpu_count()
                      print "No. of processors : ", Nprocs
                      for i in range(Nprocs):
                          p = mp.Process(target = loop, args=(Nloop/Nprocs, out)) 
                          jobs.append(p)
                          p.start()
                  
                      final_result = zeros((700, 700, 700), dtype = 'float')
                  
                      for i in range(Nprocs):
                          final_result = final_result + out.get()
                  
                      p.join()
                  test = rand_function(a,b,c,a0, b0, c0)
                  

                  Here is the error message :

                  Traceback (most recent call last):
                    File "/usr/lib/python2.7/multiprocessing/queues.py", line 266, in _feed
                      send(obj)
                  SystemError: NULL result without error in PyObject_Call
                  

                  I read here that it is a bug. But I am unable to understand. Can anyone please tell me any way out to calculate huge data using multiprocessing?

                  Thank you very much

                  解决方案

                  The bug report your reference states that multiprocessing module is unable to push huge arguments to subprocess.

                  The reason is that it needs to pickle these arguments and store the pickled blob somewhere in memory.

                  You, however, don't need to pass arrays as arguments.

                  Possible causes:

                  • passing a closure loop as a target
                  • passing mp.Queue() as argument

                  Please see http://stevenengelhardt.com/2013/01/16/python-multiprocessing-module-and-closures/ about converting your closure to a class.

                  Set up full state before you give control to multiprocessing.

                  这篇关于多处理:在 PyObject_Call 中没有错误的 NULL 结果的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  Adding config modes to Plotly.Py offline - modebar(将配置模式添加到 Plotly.Py 离线 - 模式栏)
                  Plotly: How to style a plotly figure so that it doesn#39;t display gaps for missing dates?(Plotly:如何设置绘图图形的样式,使其不显示缺失日期的间隙?)
                  python save plotly plot to local file and insert into html(python将绘图保存到本地文件并插入到html中)
                  Plotly: What color cycle does plotly express follow?(情节:情节表达遵循什么颜色循环?)
                  How to save plotly express plot into a html or static image file?(如何将情节表达图保存到 html 或静态图像文件中?)
                  Plotly: How to make a line plot from a pandas dataframe with a long or wide format?(Plotly:如何使用长格式或宽格式的 pandas 数据框制作线图?)

                    <tbody id='wfLOG'></tbody>

                      <small id='wfLOG'></small><noframes id='wfLOG'>

                        <i id='wfLOG'><tr id='wfLOG'><dt id='wfLOG'><q id='wfLOG'><span id='wfLOG'><b id='wfLOG'><form id='wfLOG'><ins id='wfLOG'></ins><ul id='wfLOG'></ul><sub id='wfLOG'></sub></form><legend id='wfLOG'></legend><bdo id='wfLOG'><pre id='wfLOG'><center id='wfLOG'></center></pre></bdo></b><th id='wfLOG'></th></span></q></dt></tr></i><div id='wfLOG'><tfoot id='wfLOG'></tfoot><dl id='wfLOG'><fieldset id='wfLOG'></fieldset></dl></div>
                        <legend id='wfLOG'><style id='wfLOG'><dir id='wfLOG'><q id='wfLOG'></q></dir></style></legend>

                        • <tfoot id='wfLOG'></tfoot>
                            <bdo id='wfLOG'></bdo><ul id='wfLOG'></ul>