• <legend id='7yyIk'><style id='7yyIk'><dir id='7yyIk'><q id='7yyIk'></q></dir></style></legend>

    <small id='7yyIk'></small><noframes id='7yyIk'>

      <bdo id='7yyIk'></bdo><ul id='7yyIk'></ul>
    <i id='7yyIk'><tr id='7yyIk'><dt id='7yyIk'><q id='7yyIk'><span id='7yyIk'><b id='7yyIk'><form id='7yyIk'><ins id='7yyIk'></ins><ul id='7yyIk'></ul><sub id='7yyIk'></sub></form><legend id='7yyIk'></legend><bdo id='7yyIk'><pre id='7yyIk'><center id='7yyIk'></center></pre></bdo></b><th id='7yyIk'></th></span></q></dt></tr></i><div id='7yyIk'><tfoot id='7yyIk'></tfoot><dl id='7yyIk'><fieldset id='7yyIk'></fieldset></dl></div>

      <tfoot id='7yyIk'></tfoot>
      1. 根据日期将数据框拆分为两个

        Split dataframe into two on the basis of date(根据日期将数据框拆分为两个)

        <small id='ZthL1'></small><noframes id='ZthL1'>

        • <legend id='ZthL1'><style id='ZthL1'><dir id='ZthL1'><q id='ZthL1'></q></dir></style></legend>
          • <tfoot id='ZthL1'></tfoot>
              <tbody id='ZthL1'></tbody>

              <bdo id='ZthL1'></bdo><ul id='ZthL1'></ul>
                <i id='ZthL1'><tr id='ZthL1'><dt id='ZthL1'><q id='ZthL1'><span id='ZthL1'><b id='ZthL1'><form id='ZthL1'><ins id='ZthL1'></ins><ul id='ZthL1'></ul><sub id='ZthL1'></sub></form><legend id='ZthL1'></legend><bdo id='ZthL1'><pre id='ZthL1'><center id='ZthL1'></center></pre></bdo></b><th id='ZthL1'></th></span></q></dt></tr></i><div id='ZthL1'><tfoot id='ZthL1'></tfoot><dl id='ZthL1'><fieldset id='ZthL1'></fieldset></dl></div>
                  本文介绍了根据日期将数据框拆分为两个的处理方法,对大家解决问题具有一定的参考价值,需要的朋友们下面随着跟版网的小编来一起学习吧!

                  问题描述

                  我有这样的 1000 行数据集

                  I have dataset with 1000 rows like this

                   Date,      Cost,         Quantity(in ton),    Source,          Unloading Station
                      01/10/2015, 7,            5.416,               XYZ,           ABC
                  

                  我想根据日期拆分数据.例如截至日期 20.12.2016 是训练数据,之后是测试数据.

                  i want to split the data on the base of date. For e.g. till date 20.12.2016 is a training data and after that it is test data.

                  我应该如何拆分?有可能吗?

                  How should i split? Is it possible?

                  推荐答案

                  您可以通过将列转换为 pandas to_datetime 类型并将其设置为索引来轻松地做到这一点.

                  You can easily do that by converting your column to pandas to_datetime type and set it as index.

                  import pandas as pd
                  df['Date'] = pd.to_datetime(df['Date'])
                  df = df.set_index(df['Date'])
                  df = df.sort_index()
                  

                  一旦你有了这种格式的数据,你可以简单地使用日期作为索引来创建分区,如下所示:

                  Once you have your data in this format, you can simply use date as index for creating partition as follows:

                  # create train test partition
                  train = df['2015-01-10':'2016-12-20']
                  test  = df['2016-12-21':]
                  print('Train Dataset:',train.shape)
                  print('Test Dataset:',test.shape)
                  

                  这篇关于根据日期将数据框拆分为两个的文章就介绍到这了,希望我们推荐的答案对大家有所帮助,也希望大家多多支持跟版网!

                  本站部分内容来源互联网,如果有图片或者内容侵犯了您的权益,请联系我们,我们会在确认后第一时间进行删除!

                  相关文档推荐

                  Adding config modes to Plotly.Py offline - modebar(将配置模式添加到 Plotly.Py 离线 - 模式栏)
                  Plotly: How to style a plotly figure so that it doesn#39;t display gaps for missing dates?(Plotly:如何设置绘图图形的样式,使其不显示缺失日期的间隙?)
                  python save plotly plot to local file and insert into html(python将绘图保存到本地文件并插入到html中)
                  Plotly: What color cycle does plotly express follow?(情节:情节表达遵循什么颜色循环?)
                  How to save plotly express plot into a html or static image file?(如何将情节表达图保存到 html 或静态图像文件中?)
                  Plotly: How to make a line plot from a pandas dataframe with a long or wide format?(Plotly:如何使用长格式或宽格式的 pandas 数据框制作线图?)

                  <tfoot id='NlIpk'></tfoot>
                  • <bdo id='NlIpk'></bdo><ul id='NlIpk'></ul>

                      <i id='NlIpk'><tr id='NlIpk'><dt id='NlIpk'><q id='NlIpk'><span id='NlIpk'><b id='NlIpk'><form id='NlIpk'><ins id='NlIpk'></ins><ul id='NlIpk'></ul><sub id='NlIpk'></sub></form><legend id='NlIpk'></legend><bdo id='NlIpk'><pre id='NlIpk'><center id='NlIpk'></center></pre></bdo></b><th id='NlIpk'></th></span></q></dt></tr></i><div id='NlIpk'><tfoot id='NlIpk'></tfoot><dl id='NlIpk'><fieldset id='NlIpk'></fieldset></dl></div>
                      <legend id='NlIpk'><style id='NlIpk'><dir id='NlIpk'><q id='NlIpk'></q></dir></style></legend>
                          <tbody id='NlIpk'></tbody>

                            <small id='NlIpk'></small><noframes id='NlIpk'>